Anglia Ruskin Research Online (ARRO)
Browse

Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis

journal contribution
posted on 2024-05-16, 10:42 authored by Gavin AD Metcalf, Akifumi Shibakawa, Hinesh Patel, Ailsa Sita-Lumsden, Andrea Zivi, Nona Rama, Charlotte L Bevan, Sylvain Ladame

Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.

History

Refereed

  • Yes

Volume

88

Issue number

16

Page range

8091-8098

Publication title

Analytical Chemistry

ISSN

0003-2700

Publisher

American Chemical Society (ACS)

Language

  • eng

Affiliated with

  • School of Life Sciences Outputs

Usage metrics

    ARU Outputs

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC